Поиск в словарях
Искать во всех

Большая советская энциклопедия - лоренца - максвелла уравнения

 

Лоренца - максвелла уравнения

лоренца - максвелла уравнения
Лоренца — Максвелла уравнения, Лоренца уравнения, фундаментальные уравнения классической электродинамики, определяющие микроскопические электромагнитные поля, создаваемые отдельными заряженными частицами. Л. — М. у. лежат в основе электронной теории (микроскопической электродинамики), построенной Х. А. Лоренцом в конце 19 — начале 20 вв. В этой теории вещество (среда) рассматривается как совокупность электрически заряженных частиц (электронов и атомных ядер), движущихся в вакууме. В Л. — М. у. электромагнитное поле описывается двумя векторами: напряженностями микроскопических полей — электрического е и магнитного h. Все электрические токи в электронной теории — чисто конвекционные, т. е. обусловлены движением заряженных частиц. Плотность тока j = ru, где r — плотность заряда, а u — его скорость. Л. — М. у. были получены в результате обобщения макроскопических Максвелла уравнений. В дифференциальной форме в абсолютной системе единиц Гаусса они имеют вид: rot h = , rot е = , (1) div h = 0 div е = 4pr (с — скорость света в вакууме). Согласно электронной теории, уравнения (1) точно описывают поля в любой точке пространства (в том числе межатомные и внутриатомные поля и даже поля внутри электрона) в любой момент времени. В вакууме они совпадают с уравнениями Максвелла. Микроскопические напряженности полей е и h очень быстро меняются в пространстве и времени и непосредственно не приспособлены для описания электромагнитных процессов в системах, содержащих большое число заряженных частиц (то есть в макроскопических материальных телах). А именно такие макроскопические процессы представляют интерес, например, для электротехники и радиотехники. Так, при токе в 1 а через поперечное сечение проводника в 1 сек проходит около 1019 электронов. Проследить за движением всех этих частиц и вычислить создаваемые ими поля невозможно. Поэтому прибегают к статистическим методам, которые позволяют на основе определенных модельных представлений о строении вещества установить связь между средними значениями напряженностей электрических и магнитных полей и усредненными значениями плотностей заряда и тока. Усреднение микроскопических величин производится по пространственным и временным интервалам, большим по сравнению с микроскопическими интервалами (порядка размеров атомов и времени обращения электронов вокруг ядра), но малым по сравнению с интервалами, на которых макроскопические характеристики электромагнитного поля заметно изменяются (например, по сравнению с длиной электромагнитной волны и ее периодом). Подобные интервалы называются «физически бесконечно малыми». Усреднение Л. — М. у. приводит к уравнениям Максвелла. При этом оказывается, что среднее значение напряженности микроскопического электрического поля равно напряженности поля в теории Максвелла: = Е, а среднее значение напряженности микроскопического магнитного поля — вектору магнитной индукции: = В. В теории Лоренца все заряды разделяются на свободные и связанные (входящие в состав электрически нейтральных атомов и молекул). Можно показать, что плотность связанных зарядов определяется вектором поляризации Р (электрическим дипольным моментом единицы объема среды): rсвяз. = - div Р (2) а плотность тока связанных зарядов, кроме вектора поляризации, зависит также от намагниченности I (магнитного момента единицы объема среды): jсвяз. = rot I. (3) Векторы Р и I характеризуют электромагнитное состояние среды. Вводя два вспомогательных вектора — вектор электрической индукции D = E + 4pP (4) и вектор напряженности магнитного поля H = B - 4pI (5) получают макроскопические уравнения Максвелла для электромагнитного поля в веществе в обычной форме. Помимо уравнений (1) для микроскопических полей, к основным уравнениям электронной теории следует добавить выражение для силы, действующей на заряженные частицы в электромагнитном поле. Объемная плотность этой силы (силы Лоренца) равна: (6) Усредненное значение лоренцовых сил, действующих на составляющие тело заряженные частицы, определяет макроскопическую силу, которая действует на тело в электромагнитном поле. Электронная теория Лоренца позволила выяснить физический смысл основных постоянных, входящих в уравнения Максвелла и характеризующих электрические и магнитные свойства вещества. На ее основе были предсказаны или объяснены некоторые важные электрические и оптические явления (нормальный Зеемана эффект, дисперсия света, свойства металлов и другие). Законы классической электронной теории перестают выполняться на очень малых пространственно-временных интервалах. В этом случае справедливы законы квантовой теории электромагнитных процессов — квантовой электродинамики. Основой для квантового обобщения теории электромагнитных процессов являются Л. — М. у. Лит.: Лорентц Г. А., Теория электронов и ее применение к явлениям света и теплового излучения, пер. с английского, 2 издание, М., 1953; Беккер Р., Электронная теория, перевод с немецкого, Л. — М., 1936; Ландау Л. Д. и Лифшиц Е. М., Теория поля, М., 1967 (Теоретическая физика, том 2). Г. Я. Мякишев.
Рейтинг статьи:
Комментарии:

См. в других словарях

1.
  (Лоренца уравнения), фундаментальные уравнения классической электродинамики, определяющие микроскопические электрические и магнитные поля, создаваемые отдельными заряженными частицами; лежат в основе электронной теории, построенной Х. А. Лоренцем в кон. 19 - нач. 20 вв. уравнения Лоренца - Максвелла получены в результате обобщения макроскопических Максвелла уравнений. ...
Большой энциклопедический словарь

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины